
Druid for real-time analysis

Yann Esposito

7 Avril 2016

Druid the Sales Pitch

Intro

Experience

▶ Real Time Social Media Analytics

Real Time?

▶ Ingestion Latency: seconds
▶ Query Latency: seconds

Demand

▶ Twitter: 20k msg/s, 1msg = 10ko during 24h
▶ Facebook public: 1000 to 2000 msg/s

continuously
▶ Low Latency

Reality

▶ Twitter: 400 msg/s continuously, burst to 1500
▶ Facebook: 1000 to 2000 msg/s

Origin (PHP)

1st Refactoring (Node.js)

Return of Experience

Return of Experience

2nd Refactoring

2nd Refactoring (FTW!)

2nd Refactoring return of
experience

Demo

Pre Considerations

Discovered vs Invented

Try to conceptualize a s.t.

▶ Ingest Events
▶ Real-Time Queries
▶ Scalable
▶ Highly Available

Analytics: timeseries, alerting system, top N, etc…

In the End

Druid concepts are always emerging naturally

Druid

Who?

Metamarkets
Powered by Druid

▶ Alibaba, Cisco, Criteo, eBay, Hulu, Netflix,
Paypal…

Goal

Druid is an open source store designed for
real-time exploratory analytics on large
data sets.

hosted dashboard that would allow users
to arbitrarily explore and visualize event
streams.

Concepts

▶ Column-oriented storage layout
▶ distributed, shared-nothing architecture
▶ advanced indexing structure

Key Features

▶ Sub-second OLAP Queries
▶ Real-time Streaming Ingestion
▶ Power Analytic Applications
▶ Cost Effective
▶ High Available
▶ Scalable

Right for me?

▶ require fast aggregations
▶ exploratory analytics
▶ analysis in real-time
▶ lots of data (trillions of events, petabytes of

data)
▶ no single point of failure

High Level Architecture

Inspiration

▶ Google’s BigQuery/Dremel
▶ Google’s PowerDrill

http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36632.pdf
http://vldb.org/pvldb/vol5/p1436_alexanderhall_vldb2012.pdf

Index / Immutability

Druid indexes data to create mostly immutable
views.

Storage

Store data in custom column format highly
optimized for aggregation & filter.

Specialized Nodes

▶ A Druid cluster is composed of various type of
nodes

▶ Each designed to do a small set of things very
well

▶ Nodes don’t need to be deployed on individual
hardware

▶ Many node types can be colocated in
production

Druid vs X

Elasticsearch

▶ resource requirement much higher for ingestion
& aggregation

▶ No data summarization (100x in real world
data)

Key/Value Stores
(HBase/Cassandra/OpenTSDB)

▶ Must Pre-compute Result
▶ Exponential storage
▶ Hours of pre-processing time

▶ Use the dimensions as key (like in OpenTSDB)
▶ No filter index other than range
▶ Hard for complex predicates

Spark

▶ Druid can be used to accelerate OLAP queries
in Spark

▶ Druid focuses on the latencies to ingest and
serve queries

▶ Too long for end user to arbitrarily explore data

SQL-on-Hadoop (Impala/Drill/Spark
SQL/Presto)

▶ Queries: more data transfer between nodes
▶ Data Ingestion: bottleneck by backing store
▶ Query Flexibility: more flexible (full joins)

Data

Concepts

▶ Timestamp column: query centered on time
axis

▶ Dimension columns: strings (used to filter or
to group)

▶ Metric columns: used for aggregations
(count, sum, mean, etc…)

Indexing

▶ Immutable snapshots of data
▶ data structure highly optimized for analytic

queries
▶ Each column is stored separately
▶ Indexes data on a per shard (segment) level

Loading

▶ Real-Time
▶ Batch

Querying

▶ JSON over HTTP
▶ Single Table Operations, no joins.

Segments

▶ Per time interval
▶ skip segments when querying

▶ Immutable
▶ Cache friendly
▶ No locking

▶ Versioned
▶ No locking
▶ Read-write concurrency

Roll-up

Example
timestamp page ... added deleted
2011-01-01T00:01:35Z Cthulhu 10 65
2011-01-01T00:03:63Z Cthulhu 15 62
2011-01-01T01:04:51Z Cthulhu 32 45
2011-01-01T01:01:00Z Azatoth 17 87
2011-01-01T01:02:00Z Azatoth 43 99
2011-01-01T02:03:00Z Azatoth 12 53

timestamp page ... nb added deleted
2011-01-01T00:00:00Z Cthulhu 2 25 127
2011-01-01T01:00:00Z Cthulhu 1 32 45
2011-01-01T01:00:00Z Azatoth 2 60 186
2011-01-01T02:00:00Z Azatoth 1 12 53

as SQL

GROUP BY timestamp, page, nb, added, deleted
:: nb = COUNT(1)
, added = SUM(added)
, deleted = SUM(deleted)

In practice can dramatically reduce the size (up to
x100)

Segments

Sharding
sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 1 20 45
2011-01-01T01:00:00Z Azatoth 1 30 106

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 1 12 45
2011-01-01T01:00:00Z Azatoth 2 30 80

Core Data Structure

▶ dictionary
▶ a bitmap for each value
▶ a list of the columns values encoded using the

dictionary

Example

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, 0, 1, 1]

bitmaps (one for each value of the column):
value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,0,1,1]

Example (multiple matches)

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, [0,1], 1, 1]

bitmaps (one for each value of the column):
value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,1,1,1]

Real-time ingestion

▶ Via Real-Time Node and Firehose
▶ No redundancy or HA, thus not recommended

▶ Via Indexing Service and Tranquility API
▶ Core API
▶ Integration with Streaming Frameworks
▶ HTTP Server
▶ Kafka Consumer

Batch Ingestion

▶ File based (HDFS, S3, …)

Real-time Ingestion

Task 1: [Interval][Window]
Task 2: []
--->

time

Querying

Query types

▶ Group by: group by multiple dimensions
▶ Top N: like grouping by a single dimension
▶ Timeseries: without grouping over dimensions
▶ Search: Dimensions lookup
▶ Time Boundary: Find available data timeframe
▶ Metadata queries

Example(s)

{"queryType": "groupBy",
"dataSource": "druidtest",
"granularity": "all",
"dimensions": [],
"aggregations": [

{"type": "count", "name": "rows"},
{"type": "longSum", "name": "imps", "fieldName": "impressions"},
{"type": "doubleSum", "name": "wp", "fieldName": "wp"}

],
"intervals": ["2010-01-01T00:00/2020-01-01T00"]}

Result

[{
"version" : "v1",
"timestamp" : "2010-01-01T00:00:00.000Z",
"event" : {

"imps" : 5,
"wp" : 15000.0,
"rows" : 5

}
}]

Caching

▶ Historical node level
▶ By segment

▶ Broker Level
▶ By segment and query
▶ groupBy is disabled on purpose!

▶ By default: local caching

Druid Components

Druid

▶ Real-time Nodes
▶ Historical Nodes
▶ Broker Nodes
▶ Coordinator
▶ For indexing:

▶ Overlord
▶ Middle Manager

Also

▶ Deep Storage (S3, HDFS, …)
▶ Metadata Storage (SQL)
▶ Load Balancer
▶ Cache

Coordinator

▶ Real-time Nodes (pull data, index it)
▶ Historical Nodes (keep old segments)
▶ Broker Nodes (route queries to RT & Hist.

nodes, merge)
▶ Coordinator (manage segemnts)
▶ For indexing:

▶ Overlord (distribute task to the middle manager)
▶ Middle Manager (execute tasks via Peons)

When not to choose Druid

Graphite (metrics)

Pivot (exploring data)

Caravel

Conclusions

Precompute your time series?

Don’t reinvent it

▶ need a user facing API
▶ need time series on many dimensions
▶ need real-time
▶ big volume of data

Druid way is the right way!

1. Push in kafka
2. Add the right dimensions
3. Push in druid
4. ???
5. Profit!

	Druid the Sales Pitch
	Intro
	Origin (PHP)
	1st Refactoring (Node.js)
	Return of Experience
	Return of Experience
	2nd Refactoring
	2nd Refactoring (FTW!)
	2nd Refactoring return of experience
	Demo
	Pre Considerations
	Druid
	High Level Architecture
	Druid vs X
	Data
	Roll-up
	Segments
	Querying
	Druid Components
	When not to choose Druid
	Graphite (metrics)
	Pivot (exploring data)
	Caravel
	Conclusions

