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Druid the Sales Pitch



Intro



Experience

▶ Real Time Social Media Analytics



Real Time?

▶ Ingestion Latency: seconds
▶ Query Latency: seconds



Demand

▶ Twitter: 20k msg/s, 1msg = 10ko during 24h
▶ Facebook public: 1000 to 2000 msg/s

continuously
▶ Low Latency



Reality

▶ Twitter: 400 msg/s continuously, burst to 1500
▶ Facebook: 1000 to 2000 msg/s



Origin (PHP)



1st Refactoring (Node.js)



Return of Experience



Return of Experience



2nd Refactoring



2nd Refactoring (FTW!)



2nd Refactoring return of
experience



Demo



Pre Considerations



Discovered vs Invented

Try to conceptualize a s.t.

▶ Ingest Events
▶ Real-Time Queries
▶ Scalable
▶ Highly Available

Analytics: timeseries, alerting system, top N, etc…



In the End

Druid concepts are always emerging naturally



Druid



Who?

Metamarkets
Powered by Druid

▶ Alibaba, Cisco, Criteo, eBay, Hulu, Netflix,
Paypal…



Goal

Druid is an open source store designed for
real-time exploratory analytics on large
data sets.

hosted dashboard that would allow users
to arbitrarily explore and visualize event
streams.



Concepts

▶ Column-oriented storage layout
▶ distributed, shared-nothing architecture
▶ advanced indexing structure



Key Features

▶ Sub-second OLAP Queries
▶ Real-time Streaming Ingestion
▶ Power Analytic Applications
▶ Cost Effective
▶ High Available
▶ Scalable



Right for me?

▶ require fast aggregations
▶ exploratory analytics
▶ analysis in real-time
▶ lots of data (trillions of events, petabytes of

data)
▶ no single point of failure



High Level Architecture



Inspiration

▶ Google’s BigQuery/Dremel
▶ Google’s PowerDrill

http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36632.pdf
http://vldb.org/pvldb/vol5/p1436_alexanderhall_vldb2012.pdf


Index / Immutability

Druid indexes data to create mostly immutable
views.



Storage

Store data in custom column format highly
optimized for aggregation & filter.



Specialized Nodes

▶ A Druid cluster is composed of various type of
nodes

▶ Each designed to do a small set of things very
well

▶ Nodes don’t need to be deployed on individual
hardware

▶ Many node types can be colocated in
production



Druid vs X



Elasticsearch

▶ resource requirement much higher for ingestion
& aggregation

▶ No data summarization (100x in real world
data)



Key/Value Stores
(HBase/Cassandra/OpenTSDB)

▶ Must Pre-compute Result
▶ Exponential storage
▶ Hours of pre-processing time

▶ Use the dimensions as key (like in OpenTSDB)
▶ No filter index other than range
▶ Hard for complex predicates



Spark

▶ Druid can be used to accelerate OLAP queries
in Spark

▶ Druid focuses on the latencies to ingest and
serve queries

▶ Too long for end user to arbitrarily explore data



SQL-on-Hadoop (Impala/Drill/Spark
SQL/Presto)

▶ Queries: more data transfer between nodes
▶ Data Ingestion: bottleneck by backing store
▶ Query Flexibility: more flexible (full joins)



Data



Concepts

▶ Timestamp column: query centered on time
axis

▶ Dimension columns: strings (used to filter or
to group)

▶ Metric columns: used for aggregations
(count, sum, mean, etc…)



Indexing

▶ Immutable snapshots of data
▶ data structure highly optimized for analytic

queries
▶ Each column is stored separately
▶ Indexes data on a per shard (segment) level



Loading

▶ Real-Time
▶ Batch



Querying

▶ JSON over HTTP
▶ Single Table Operations, no joins.



Segments

▶ Per time interval
▶ skip segments when querying

▶ Immutable
▶ Cache friendly
▶ No locking

▶ Versioned
▶ No locking
▶ Read-write concurrency



Roll-up



Example
timestamp page ... added deleted
2011-01-01T00:01:35Z Cthulhu 10 65
2011-01-01T00:03:63Z Cthulhu 15 62
2011-01-01T01:04:51Z Cthulhu 32 45
2011-01-01T01:01:00Z Azatoth 17 87
2011-01-01T01:02:00Z Azatoth 43 99
2011-01-01T02:03:00Z Azatoth 12 53

timestamp page ... nb added deleted
2011-01-01T00:00:00Z Cthulhu 2 25 127
2011-01-01T01:00:00Z Cthulhu 1 32 45
2011-01-01T01:00:00Z Azatoth 2 60 186
2011-01-01T02:00:00Z Azatoth 1 12 53



as SQL

GROUP BY timestamp, page, nb, added, deleted
:: nb = COUNT(1)
, added = SUM(added)
, deleted = SUM(deleted)

In practice can dramatically reduce the size (up to
x100)



Segments



Sharding
sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 1 20 45
2011-01-01T01:00:00Z Azatoth 1 30 106

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00:00Z_v1_0

timestamp page ... nb added deleted
2011-01-01T01:00:00Z Cthulhu 1 12 45
2011-01-01T01:00:00Z Azatoth 2 30 80



Core Data Structure

▶ dictionary
▶ a bitmap for each value
▶ a list of the columns values encoded using the

dictionary



Example

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, 0, 1, 1]

bitmaps (one for each value of the column):
value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,0,1,1]



Example (multiple matches)

dictionary: { "Cthulhu": 0
, "Azatoth": 1 }

column data: [0, [0,1], 1, 1]

bitmaps (one for each value of the column):
value="Cthulhu": [1,1,0,0]
value="Azatoth": [0,1,1,1]



Real-time ingestion

▶ Via Real-Time Node and Firehose
▶ No redundancy or HA, thus not recommended

▶ Via Indexing Service and Tranquility API
▶ Core API
▶ Integration with Streaming Frameworks
▶ HTTP Server
▶ Kafka Consumer



Batch Ingestion

▶ File based (HDFS, S3, …)



Real-time Ingestion

Task 1: [ Interval ][ Window ]
Task 2: [ ]
----------------------------------------------------->

time



Querying



Query types

▶ Group by: group by multiple dimensions
▶ Top N: like grouping by a single dimension
▶ Timeseries: without grouping over dimensions
▶ Search: Dimensions lookup
▶ Time Boundary: Find available data timeframe
▶ Metadata queries



Example(s)

{"queryType": "groupBy",
"dataSource": "druidtest",
"granularity": "all",
"dimensions": [],
"aggregations": [

{"type": "count", "name": "rows"},
{"type": "longSum", "name": "imps", "fieldName": "impressions"},
{"type": "doubleSum", "name": "wp", "fieldName": "wp"}

],
"intervals": ["2010-01-01T00:00/2020-01-01T00"]}



Result

[ {
"version" : "v1",
"timestamp" : "2010-01-01T00:00:00.000Z",
"event" : {

"imps" : 5,
"wp" : 15000.0,
"rows" : 5

}
} ]



Caching

▶ Historical node level
▶ By segment

▶ Broker Level
▶ By segment and query
▶ groupBy is disabled on purpose!

▶ By default: local caching



Druid Components



Druid

▶ Real-time Nodes
▶ Historical Nodes
▶ Broker Nodes
▶ Coordinator
▶ For indexing:

▶ Overlord
▶ Middle Manager



Also

▶ Deep Storage (S3, HDFS, …)
▶ Metadata Storage (SQL)
▶ Load Balancer
▶ Cache



Coordinator

▶ Real-time Nodes (pull data, index it)
▶ Historical Nodes (keep old segments)
▶ Broker Nodes (route queries to RT & Hist.

nodes, merge)
▶ Coordinator (manage segemnts)
▶ For indexing:

▶ Overlord (distribute task to the middle manager)
▶ Middle Manager (execute tasks via Peons)



When not to choose Druid



Graphite (metrics)



Pivot (exploring data)



Caravel



Conclusions



Precompute your time series?



Don’t reinvent it

▶ need a user facing API
▶ need time series on many dimensions
▶ need real-time
▶ big volume of data



Druid way is the right way!

1. Push in kafka
2. Add the right dimensions
3. Push in druid
4. ???
5. Profit!
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